On the Universality for Orthogonal Ensembles of Random Matrices
نویسنده
چکیده
We prove universality of local eigenvalue statistics in the bulk of the spectrum for orthogonal invariant matrix models with real analytic potentials with one interval limiting spectrum. Our starting point is the Tracy-Widom formula for the matrix reproducing kernel. The key idea of the proof is to represent the differentiation operator matrix written in the basis of orthogonal polynomials as a product of a positive Toeplitz matrix and a two diagonal skew symmetric Toeplitz matrix.
منابع مشابه
Edge Universality for Orthogonal Ensembles of Random Matrices
We prove edge universality of local eigenvalue statistics for orthogonal invariant matrix models with real analytic potentials and one interval limiting spectrum. Our starting point is the result of [21] on the representation of the reproducing matrix kernels of orthogonal ensembles in terms of scalar reproducing kernel of corresponding unitary ensemble.
متن کاملOn the Proof of Universality for Orthogonal and Symplectic Ensembles in Random Matrix Theory
We give a streamlined proof of a quantitative version of a result from [DG1] which is crucial for the proof of universality in the bulk [DG1] and also at the edge [DG2] for orthogonal and symplectic ensembles of random matrices. As a byproduct, this result gives asymptotic information on a certain ratio of the β = 1, 2, 4 partition functions for log gases.
متن کاملHans - Jürgen Sommers February 2 , 2008
We give a constructive proof for the superbosonization formula for invariant random matrix ensembles, which is the supersymmetry analog of the theory of Wishart matrices. Formulas are given for unitary, orthogonal and symplectic symmetry, but worked out explicitly only for the orthogonal case. The method promises to become a powerful tool for investigating the universality of spectral correlati...
متن کاملSuperbosonization *
We give a constructive proof for the superbosonization formula for invariant random matrix ensembles, which is the supersymmetry analog of the theory of Wishart matrices. Formulas are given for unitary, orthogonal and symplectic symmetry, but worked out explicitly only for the orthogonal case. The method promises to become a powerful tool for investigating the universality of spectral correlati...
متن کاملCombinatorics of Dispersionless Integrable Systems and Universality in Random Matrix Theory
It is well-known that the partition function of the unitary ensembles of random matrices is given by a τ -function of the Toda lattice hierarchy and those of the orthogonal and symplectic ensembles are τ -functions of the Pfaff lattice hierarchy. In these cases the asymptotic expansions of the free energies given by the logarithm of the partition functions lead to the dispersionless (i.e. conti...
متن کاملUniversality at the Edge of the Spectrum for Unitary, Orthogonal and Symplectic Ensembles of Random Matrices
Abstract. We prove universality at the edge of the spectrum for unitary (β = 2), orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx + · · · , κ2m > 0. The precise statement of our results is given in Theorem 1.1 and Corollaries 1.2, 1.3 below. For a proof of universality in the bul...
متن کامل